5th Capacity Building Programme for Officers of Electricity Regulatory Commissions 18 – 19 Oct., 2012, IIT Kanpur & 21 – 23 Oct., 2012, Bangkok

Renewable Energy: Resources, Technology, Economics and Policies

Anoop Singh Associate Prof. Dept of Industrial and Management Engg. IIT Kanpur

mara 5.	India's Hydrocarbon Reserves									
Resources	Unit	Proved	Inferred	Indicated	Production in 2004-05	Net Imports in 2004-05	Res Product P/Q	serve/ tion Ratio		
		(P) (I)		(Q)	(M)					
Coal (as on 1.1.2005)	Mtoe	38114	48007	15497						
Extractable Coal [∞]	Mtoe	13489	%00-1	5650	157	16	86	147-186		
Lignite (as on 1.1.2005)	Mtoe	1220	3652	5772						
Extractable Lignite	Mtoe	1220			9		136	136		
Oil (2005)	Mt	786°		-	34	87	23	23		
Gas (2005)	Mtoe	1101*			29	3 (LNG)	38	38		
Coal Bed Methane	Mtoe	765		1260-2340						
In-situ Coal Gasification***		3	?							

**	Keserves/Pro	il & Natural Gas				
Year	Reserves®	Oil (Mt) Production	Reserves [®]	Production		
1970-71	128	6.9	62	1.4		
1980-81	366	10.5	351	2.4		
1990-91	739	32.2	686	18.0		
2000-01	703	32.4	760	29.5		
2001-02	732	32.0	763	29.7		
2002-03	741	33.0	751	31.4		
2003-04	761	33.4	853	32.0		
2004-05	739	33.9	923	31.8		
2005-06(p)	786	33.2	1101	32,2		

Top ten hard coal producers and importers – 2008 (So: IEA)

	million tonnes	million tonnes	Steam	Coking	Total	
China	2 716	Japan	128	58	186	
USA	993	Kana (Darahija)	76	24	100	
India	484	Korea (Republic)	/0	24	100	
Australia	332	Taiwan, China	60	6	66	
South Africa	251	India	21	20	60	
Russian Federation	246	Incia	51	29	00	
Indonesia	229	Germany	37	9	46	
Kazakhstan	100	China	35	11	46	
Poland	84	Ciiiia	55		40	
Colombia	74	UK	37	7	44	

Projections for Total Primary Commercial Energy Requirements

Year	Population in millions	G (Rs. in @1993-9	DP Billion 94 prices)	TPC (Mto GDP Gro	CES e) 1 wth Rate	TPCES (Mtoe) 2 GDP Growth Rate	
		8%	9%	8%	9%	8%	9%
2006-07	1114	17839	18171	389	397	394	403
2011-12	1197	26211	27958	521	551	537	570
2016-17	1275	38513	43017	684	748	732	807
2021-22	1347	56588	66187	898	1015	998	1142
2026-27	1411	83145	101837	1166	1360	1361	1617
2031-32	1468	122170	156689	1514	1823	1856	2289

Almost four times growth!

- TPCES 1 Falling Energy-GDP elasticities
- TPCES 2 Constant Energy-GDP elasticities

Year	Billion	kWh	Regime to a	attract
	8%	9%	87	9%
2006-07	700	700	140	140
2011-12	1029	1077	206	215
2016-17	1511	1657	303	331
2021-22	2221	2550	445	510
2026-27	3263	3923	655	785
2031-32	4793	6036	962	1207

D Pi	ema rodu	and acts	Sce	ena	rio 1	for	Pe	trol	eum	l	
		EIA (2004)		IEA	Projec IHV-2025	tions by the India Vi	e Various / sion-2020	Agencies Working	Power &		
				(2004)	(2000)	(20	002)	Group	Energy	IRADe 8	e PWC*
Year	Reference	High	Low					10th Plan	(Planning	(20	05)
	Case	Case	Case			BAU	BCS	(2001-02)	Commission) Projections (2003-04)	BAU	HOG
Base Year	2001 (105 Mt)	2001 (105 Mt)	2001 (105 Mt)	2000 (102 Mt)	1998-99 (91 Mt)	19 (83	997 Mt)	2001-02 (108 Mt)	2001-02 (108 Mt)	2003 (109.7	3-04 7 Mt)
2004-05	119	122	115	122	132	121	112	119	124	125	127
2009-10	139	149	129	145	175	153	135	139	147	162	176
2014-15	157	194	154	171	226	193	162	164	174	191	212
2019-20	219	254	189	201	288	245	195	195	207	212	259
2024-25	264	324	204	230	368	309	235	232	240	260	347
2029-30				271				276	281	320	465

man		A(.II	\mathbf{n}	ot (<u>`</u> ^?	l (1r	∧ N/
	LIUJ	uu	UII	UI V	Jua	1 (11	I IV.
	U					•	
Source	Sectors/Period	Base year	06-07	2011-12	2016-17	2021-22	2024-25
	Power		322	469	617		
	Captive Power		28	32	37		
X Plan working	Steel		43	40	40		
group	Cement		25	24	25		
	Fertiliser		4	5	5		
	Others		51	50	56		
	Total	2001-02	473	620	780	981	112
	Power		322	413	517	635	719
	Captive Power		28	43	60	84	10
Coal Vision	Fertiliser		4				
2025* 7% GDP	Steel		43	53	67	84	9)
	Cement		25	38	58	88	11.
	Others		51	64	80	101	11
	Total	2006-07	473	611	782	992	114
	Power		322	427	553	699	80-
	Captive Power		28	44	63	90	11
Coal Vision	Fertiliser		4				
2025* 8% GDP	Steel		43	54	69	90	10
	Cement		25	39	61	95	12
	Others		51	65	82	106	12
	Total	2006-07	473	630	0.10	1070	10/

Requir	reme	ents	— A	A So	cen	ario) (N	/Ito	e)	
Year	Hydro	Nuclear	8%	Coal 9%	C 8%	oil 9%	Natura 8%	al Gas 9%	TPC 8%	CES 9%
2011-12	12	17	257	283	166	186	44	48	496	546
2016-17	18	31	338	375	214	241	64	74	665	739
2021-22	23	45	464	521	278	311	97	111	907	1011
2026-27	29	71	622	706	365	410	135	162	1222	1378
2031-32	35	98	835	937	486	548	197	240	1651	1858
CAGR -% (Compounded Annual Growth Rates)	5.9	11.2	5.9	6.3	5.1	5.6	7.2	8	6	6.4
Per capita consumption In 2032 (Kgoe)	24	67	(I	SC, U	gies SC,	Eng fuels,	ines, bi fuel ce	o- ills,	1124	1266
In 2004 (Kgoe)	6.5	4.6	157			veh.	emissio	ns 27	306	306
Ratio 2032/2004	3.7	14.6	3.6	4.1	2.9	3.4	5.2	6.3	3.7	4.1

			E	Efficient				,		
Year	Fire & C	Wood Chips	App	rating)		Cake	Kerc	osene	L.P	P.G.
	8%	9%	8%		8%	9%	8%	9%	8%	9%
2000	79.62	79.62	8.43	8.43	29.61	29.61	10.07	10.07	6.42	6.42
2006	88.64	88.78	18.17	19.26	36.97	37.33	12.68	12.77	15.85	16.87
2011	94.11	94.05	27.17	29.68	40.42	40.48	14.01	14.02	23.94	26.07
2016	98.44	98.50	38.38	42.28	41.93	41.35	14.84	14.70	33.11	35.93
2021	102.06	102.46	50.39	54.78	41.79	40.87	15.16	14.93	41.63	44.16
2026	104.64	105.07	61.37	64.95	40.95	40.28	15.17	14.93	48.11	49.63
2031	106.39	106.59	69.72	71.80	40.47	40.21	15.12	14.96	52.27	52.89

Resources	Unit	Present	Potential	Basis of Accessing Potential
Hydro-power	MW	32,326	1,50,000	Total potential assessed is 84,000 MW** at 60% load factor or 1,50,000 MW at lower load factors
Biomass				
Wood	Mtoe/year	140	620*	Using 60 million Ha wasteland yielding (20) MT/Ha/year
		0.6**	4	In 12 million family sized plants
Biogas	Mtoe/year	0.1	15	In community based plants if most of the dung is put through them.
Bio-Fuels				
Bio-diesel	Mtoe/year	-	20*	Through plantation of 20* million hectares o wasteland or 7* million hectares of intensive cultivation
Ethanol	Mtoe/year	<1	10	From 1.2 million hectares of intensive cultivation with required inputs.
Solar				
Photovoltaic	Mtoe/year	-	1,200	Expected by utilising 5 million hectares wasteland at an efficiency level of 15 percent for Solar Photovoltaic Cells
Thermal	Mtoe/year		1,200	MWe scale power plants using 5 million hectares
Wind Energy	Mtoe/year	<1	10	Onshore potential of 65,000 MWe at 20 percent load factor
Small Hydro-power	rMtoe/year	< 1	5	

Renewable Energy Resources – Technological Challenges

- Increasing PV efficiency
- Cost effective power electronics
- Energy Storage Fuel Cells
- High capacity offshore wind
- Grid Integration
- Generation Forecasting
- (New Business Models Replicability, Scalability Challenges)

Role of Policy and Regulation

Policy – Low Carbon Growth

- Renewable Energy
 - Electricity Act Renewable Purchase Obligation
 - Renewable Energy Certificates (REC)
- Energy Efficiency
 - Energy Efficiency Standards
 - Appliance Rating
- National Action Plan for Climate Change
 - JN National Solar Mission

Challenge for Harnessing Renewable Energy

- Resources
- Technology
- Financing
- Policy & Regulation

Need some Carrots (and small sticks)

Carrots

- Subsidies
- Feed-in Tariffs
- Tax Breaks

Sticks!

• Obligation to buy electricity generated from renewable energy resources, Renewable Portfolio Obligation (RPO)

Electricity Act 2003 and Policy Framework for Renewable Energy

- State Electricity Regulatory Commissions (SERCs) to specify a percentage of the total consumption of electricity in the area of a distribution licensee, for purchase of electricity from co-generation and renewable energy sources (renewable portfolio obligation) (Sec. 81 (1) (e)).
- SERCs to promote co-generation and generation of electricity through renewable sources of energy by providing suitable measures for <u>connectivity with the grid</u> and sale of electricity to any persons (Sec. 81 (1) (e)).
- Terms and conditions for the <u>determination of tariff</u> to be prescribed by the SERCs to promote co-generation and generation of electricity from renewable sources of energy. (Sec. 61 (h))

Electricity Act 2003 and Policy Framework for Renewable Energy (Contd.)

- National Electricity Policy to be formulated by the central government, in consultation with the state governments for development of the power system based on <u>optimal utilization of resources including</u> renewable sources of energy. (Sec. 3 (1))
- Central Government to prepare a national policy, in consultation with the State Governments, <u>permitting stand alone systems</u> (including those based on renewable sources of energy and other non-conventional sources of energy) for rural areas. (Sec. 4)

.

	J and	1 1ts	Cor	npli	ance	ACI	ross				
Stat	States (in %)										
				RPO	O Targets		RPO Perfe	ormance			
		2008-	2009-					2009-			
States	2007-08	09	10	2010-11	2011-12	2007-08	2008-09	10			
Andhra											
Pradesh#\$	5	5	5	5	5	4.41	3.95	4.06			
Bihar@			4	5	6			NA			
Delhi	1	1	1	1							
Gujarat	1	2	2			2.07	NA	2.55			
Haryana	3	5	10	10	10	NA	0.01	5.7			
Karnataka	7-10	7-10	7-10			9.83	10.80	11.04			
Madhya Prad.		10	10	10	10	0.08	0.07	0.06			
Maharashtra\$	4	5	6			3.35	3.36	4.25			
Orissa	3	3	4			0	0	1.26			
Punjab	1	1	2	3	4	0.69	0.74	1.49			
Rajasthan\$	4.88	6.25	7.45	8.50	9.75	2.57	4.90	3.23			
Tamil Nadu	10	10				11.65	12.08	13.79			
Uttaranchal	5	5	8	9	10	1.4	1.7	2.18			
Uttar Pradesh	7.5	7.5	7.5			1.26	2.98	2.97			
West Bengal	0.95-3.8	2-4.8	4-6.8	7-8.3	10	NA	0-0.37	0-0.34			

Challenges

- Economic Efficiency of existing policies
- States have different resource endowments and some have very limited ones (e.g. Delhi)
- How to incentivise renewable resources in remote areas not connected with grid?

Jawaharlal Nehru National Solar Mission (JNNSM)

- One of the 8 national missions under the National Action Plan on Climate Change (NAPCC), which was launched on June 30, 2008.
- About 5,000 trillion kWh per year solar energy is incident over India's land area. In most parts, solar incidence ranges 4-7 kWh per sq.m per day.
- NAPCC National level target for RE Purchase may be set at 5% of total grid purchase for FY 2010. This could be increased by 1% each year for the next 10 years.

J	NNSM Ro	badmap		
S. No.	Application segment	Target for Phase I	Target for Phase II	Target for Phase III
		(2010-13)	(2013-17)	(2017-22)
	Solar collectors			
1	(million sq. meters)	7	15	20
2	Off grid solar applications (MW)	200	1000	2000
3	Utility grid power, incl. roof top (MW)	1,000-2000	4000-10,000	20000

NMEEE - Mandate

- Perform Achieve and Trade (PAT) A market based mechanism to enhance cost effectiveness of improvements in energy efficiency in energy-intensive large industries and facilities, Tradable certificates of energy savings.
- Market Transformation for Energy Efficiency Energy efficient appliances in designated sectors
- Energy Efficiency Financing Platform Creation of mechanisms to help finance demand side management programmes in all sectors.
- Framework for Energy Efficient Economic Development Developing fiscal instruments to promote energy efficiency.

What influences economics of Renewable Energy Sources

- High capital cost
- Low capacity utilisation
- Weather risk (instead of fuel risk)
- Evolving technology
- Grid integration
- Increasing land prices and land squatting

Road Ahead

- Energy Efficiency Low hanging fruit and no regret option
- Renewable Energy Road to Energy security but some technical challenges
- Policy and Regulatory Environment need to provide incentive for adoption of clean and efficient technology in the energy sector.

Thank You

www.iitk.ac.in/ime/anoops anoops@iitk.ac.in

- Short Term Course "Challenges and Implementation Issues post Electricity Act 2003: Regulatory, Policy & Technical Solutions", 10-14 April, 2004
- International Conference on "Power Market Development in India: Reflections from International Experience", 19-21 April, 2005
- National Workshop on "Project Financing for Energy and Infrastructure Sector", April 19-22, 2007

- 2nd National Workshop on "Project Financing for Energy and Infrastructure Sector", April 24-27, 2008
- Capacity Building Programme for Officers of Electricity Regulatory Commissions, 30th June - 5th July, 2008
- 2nd Capacity Building Programme for Officers of Electricity Regulatory Commissions, 3-8 August, 2009
- 3rd Capacity Building Programme for Officers of Electricity Regulatory Commissions, 23-28 August, 2010
- 4th Capacity Building Programme for Officers of Electricity Regulatory Commissions, 18-23 July, 2011
- Energy Conclave 2010, 8-15 Jan. 2010